SchenQL: Evaluation of a Query Language for
Bibliographic Metadata

Christin K. Kreutz[0000-0002=5075-7699]1 \[ichael Wolz[0000—0002-9313-7131]
Benjamin Weyers[0000—0003—4785-708X]1 "5y q Ralf Schenke][0000—0001-5379—5191]1

! Trier University, 54286 Trier, DE
kreutzch, weyers, schenkel;@uni-trier.de
y

Abstract. Information access needs to be uncomplicated, as users may
not benefit from complex and potentially richer data that may be less
easy to obtain. A user’s demand for answering more sophisticated re-
search questions including aggregations could be fulfilled by the usage
of SQL. However, this comes with the cost of high complexity, which
requires for a high level of expertise even for trained programmers. A
domain-specific query language could provide a straightforward solution
to this problem. Although less generic, it is desirable that users not famil-
iar with query construction are supported in the formulation of complex
information needs.

In this paper, we extend and evaluate SchenQL, a simple and applicable
query language that is accompanied by a prototypical GUI. SchenQL
focuses on querying bibliographic metadata while using the vocabulary
of domain-experts. The easy-to-learn domain-specific query language is
suitable for domain-experts as well as casual users while still providing
the possibility to answer complicated queries. Query construction and in-
formation exploration is supported by the prototypical GUIL. Eventually,
the complete system is evaluated: interviews with domain-experts and a
bipartite quantitative user study demonstrate SchenQL’s suitability and
high level of users’ acceptance.

Keywords: domain-specific query language, bibliographic metadata, dig-
ital libraries, graphical user interface.

1 Introduction

Scientific writing almost always starts with a thorough bibliographic research
on relevant publications, authors, conferences, journals and institutions. While
web search is excellent for question answering and intuitively performed, not
all retrieved information is correct, unbiased and categorized [II]. The arising
problem is people’s tendency of rather using poor information sources that are
easy to query than more reliable sources which might be harder to access [12].
This introduces the need for more formal and structured information sources
such as digital libraries specialised in the underlying data, that at the same time
need to be easy to query. Existing interfaces of digital libraries often provide

2 Kreutz et al.

keyword search on metadata or to query attributes [II3I6I22130]. However, in
many cases, these interfaces do not allow to directly express advanced queries
such as "Which are the five most cited articles written by person P about topic
T after year Y 2”7, but require complex interaction. Popular examples of such
limited systems are dblp [30] or Semantic Scholar [6]. More complex tools such
as GrapAL [2I5] are capable of answering said complex queries, but require
specific and uncommon programming skills. Another option is to use structured
query languages such as SQL, a widespread language for querying databases,
which unfortunately tends to be difficult to master [39]. This is critical as in
most cases domain-experts are familiar with the schema of the data but are not
experienced in using all-purpose query languages such as SQL [9J31]. This is
even worse for casual users of digital libraries who neither have knowledge of the
structure of the data nor of SQL.

To close this gap, we presented the SchenQL Query Language for the domain
of bibliographic metadata [28]. SchenQL is designed to be easily utilised by
domain-experts as well as casual users as it uses the vocabulary of digital libraries
in its syntax. While domain-specific query languages (DSLs) provide a multitude
of advantages [I7], the most important aspect in the conception of SchenQL was
that no programming skills or database schema knowledge is required to use
it. For SchenQL to be widely applicable, we introduce a prototypical graphical
user interface (the SchenQL GUI) which supports the construction of queries,
offers visualisations of query results and an additional dimension of retrieving
information by exploring data and its relations through clicking. As an example
of SchenQL, the aforementioned question can be formulated as follows: MOST
CITED (ARTICLES WRITTEN BY "P" ABOUT "T" AFTER Y) LIMIT 5.

The major contribution of this paper is the empirical evaluation of SchenQL
as domain-specific query language on bibliographic metadata including the in-
vestigation of a prototypical GUI that is designed to assist users in creating
queries.SchenQL is evaluated two-fold: 1) interviews with domain-experts were
conducted to identify applications as well as options for further development
and 2) a quantitative user study consisting of two parts measured effectiveness,
efficiency and users’ satisfaction with our whole system: we first evaluated usage
of command line SchenQL against SQL, followed by a study which compared
usage of the SchenQL GUI to the previous results. Here, the User Experience
Questionnaire [36] was conducted for assessment of user experience.

The remainder of this paper is structured as follows: Section [2] discusses
related work. Section [3]introduces the structure and syntax of SchenQL including
the presentation of the SchenQL GUI, which is evaluated in two parts in the
following Section 4l The last Section [5| describes possible future research.

2 Related Work

Areas adjacent to the one we are tackling are search on digital libraries, search
interfaces on bibliographic metadata and domain-specific query languages.

SchenQL: Evaluation of a Query Language for Bibliographic Metadata 3

For search on digital libraries, the MARC format is a standard for information
exchange [II]. While it is useful for known-item search, topical search might
be problematic as contents of the corresponding fields can only be interpreted
by domain-experts [I1]. Most interfaces on digital libraries provide field-based
Boolean search [35] which can lead to difficulties in formulating queries that
require the definition and concatenation of multiple attributes. This might cause
a substantial cognitive workload on the user [I4]. In contrast, withholding or
restriction of faceted search on these engines fails to answer complex search
tasks [13]. Thus, we focus on a search of topical information that even casual
users can utilise while also offering the possibility to clearly define search terms
for numerous attributes in a single query.

Several search interfaces on bibliographic metadata exist such as dblp [26130],
Bibsonomy [22], Google Scholar [1], ResearchGate [3] or Semantic Scholar [6]. All
of those systems allow for systematic refinement of result sets by application of
filter options via facets to varying extends. Only dblp and Semantic Scholar (on
a small scale) support search on venues. The formulation of complex queries with
aggregations is not targeted by any of them. In contrast, SchenQL supported
by a GUI specialises on these functionalities. GrapAL [2[I5] actually provides
all functions of SchenQL but is a complex tool utilising the Cypher [20] query
language (QL).

Domain-specific query languages come in various shapes. They can be SQL-
like [29], visual QLs [9UI8] or use domain-specific vocabulary [38] but are typically
specialised on a certain area. They also come in different complexities: for exam-
ple MathQL [2]] is a query language in markup style on RDF repositories but a
user needs to be mathematician to be able to operate it. The DSL proposed by
Madaan [3T] stems from the medical domain and is designed to be used by in-
experienced patients as well as medical staff. Some DSLs are domain-unspecific
such as the aforementioned Cypher [20], BiQL [19] or SnQL [32] and depend
on complicated SQL-like syntax. With SchenQL, we provide a QL which uses
vocabulary from the domain of bibliographic metadata while being useful for
experts as well as casual users and avoiding complicated syntax.

3 SchenQL: QL and GUI

For simplicity, we refer to SchenQL including its GUI as the SchenQL system.
SchenQL was developed to access bibliographic metadata textually, which resem-
bles natural language for casual as well as expert users of digital libraries [27].
The fundamental idea is to hide complex syntax behind plain domain-specific vo-
cabulary. This enables usage from anyone versed in the vocabulary of the domain
without experience in sophisticated query languages such as SQL. The prototyp-
ical GUI supports SchenQL: it helps in query formulation with auto-completion
and keyword suggestion. Additionally, it provides visual exploration of query
results supporting two standard visualisations: Ego Graph [34] and BowTie [25].

For our data model we assume bibliographic metadata consists of persons
and publications they authored or edited. These persons can be affiliated with

4 Kreutz et al.
PUBLICATION PERSON CONFERENCE JOURNAL INSTITUTION
L| key, title key, primary name, | key, acronym | key, acronym
orcid
S| MASTERTHESIS, BOOK, | AUTHOR, EDITOR
CHAPTER, PHDTHESIS,
ARTICLE
F| PUBLISHED BY (I), ABOUT | PUBLISHED IN ACRONYM NAMED name, NAMED name,
(keywords), WRITTEN BY | (C|J), PUBLISHED | acronym, ABOUT | ACRONYM CITY city,
(PE), EDITED BY (PE), | WITH (I), WORKS | (keywords), acronym, COUNTRY
APPEARED IN (ClJ), FOR (I), NAMED | BEFORE year, ABOUT country,
BEFORE year, IN YEAR | name, ORCID orcid, | IN YEAR year, | (keywords), MEMBERS (PE)
year, AFTER year, TITLED | AUTHORED (PU), AFTER year BEFORE year,
title, REFERENCES (PU), | REFERENCES (PU), IN YEAR year,
CITED BY (PU) CITED BY (PU) AFTER year,
VOLUME volume
V| title primary name acronym acronym primary name
+ location

Table 1: SchenQL base concepts Publications (PU), persons (PE), conferences
(C), journals (J) and institutions (I) with their respective literals (L), spe-
cialisations (S), filters (F) and standard return values (V, relevant for the CLI).

certain institutions. Publications can be of multiple types and may be published
in conferences or journals. Publications can reference previously published papers
and might be cited themselves by more recent work building upon them.

3.1 Building Blocks

Base concepts are the basic return objects of SchenQL. A base concept is con-
nected to an entity of the dataset and has multiple attributes. Those base con-
cepts are publications, persons, conferences, journals and institutions.
Upon these concepts, queries can be constructed. Base concepts can be spe-
cialised. For example publications can be refined by specialisations books,
chapters, articles, master or PhD theses. A specialisation can be used in-
stead of a base concept in a query.

Filters can restrict base concepts by extracting a subset of the data. Literals
can be used as identifiers for objects from base concepts, they can be utilised
to query for specific data. Attributes of base concepts can be queried, for a
list of attributes see Kreutz et al. [28]. Table [1] gives an overview of literals,
specialisations, filters and the standard return value for every base concept.

Functions are used to aggregate data or offer domain-specific operations.
Right now, four functions are implemented in SchenQL: MOST CITED, COUNT,
KEYWORDS OF and COAUTHORS OF. The function MOST CITED (PUBLICATION) can
be applied on publications. It returns titles as well as numbers of citations of
papers in the following set. By default, the top five results are returned. COUNT
returns the number of objects contained in the following sub-query. KEYWORDS
OF (PUBLICATION | CONFERENCE | JOURNAL) returns the keywords associated
with the following base concept. COAUTHORS OF (PERSON) returns the coauthors
of an author. The LIMIT x operator with x € N can be appended at the end of
any query to change the number of displayed results to at most z.

SchenQL: Evaluation of a Query Language for Bibliographic Metadata 5

3.2 Syntax and Implementation

The syntax of SchenQL follows simple rules resulting in queries similar to nat-
ural language which are aiming at simple construction. Sub-queries have to be
surrounded by parentheses. It is possible to write singular or plural when using
base concepts or specialisations (e.g. JOURNAL or JOURNALS). Filters following
base concepts or their specialisations can be in arbitrary order and get con-
nected via conjunction if not specified otherwise (OR and NOT are also possible).
Most filters expect a base concept as parameter (e.g. WRITTEN BY (PERSONS)),
however some filters anticipate a string as parameter (e.g. COUNTRY "de"). Spe-
cialisations can be used in place of base concepts. Instead of a query PERSON
NAMED "Ralf Schenkel" a specialisation like AUTHOR NAMED "Ralf Schenkel"
would be possible. If a filter requires a base concept, parentheses are needed ex-
cept for the case of using literals for identifying objects of the base concept. For
example PUBLICATIONS WRITTEN BY "Ralf Schenkel" is semantically equiv-
alent to PUBLICATIONS WRITTEN BY (PERSONS NAMED "Ralf Schenkel"). At-
tributes of base concepts can be accessed by putting the queried for attribute(s)
in front of a base concept and connecting both parts with an OF (e.g. "name",
"acronym" OF CONFERENCES ABOUT KEYWORDS ["DL", "QLS"]).

For implementation, lexer and parser of the compiler for SchenQL were built
using ANTLR with Java as target language. The compiler translates queries
from SchenQL to SQL and runs them against a MySQL 8.0.16 database holding
the data. Data on references and citations is contained in a single table. SchenQL
can be used in a terminal client similar to the MySQL shell.

3.3 GUI

The GUI is inspired by results from the qualitative study described in Sec-
tion It provides access to information by supporting the construction of
queries including the interactive navigation with the GUIL. It also offers auto-
completion of SchenQL query keywords and suggestions for the formulation of
queries. Results of queries can be sorted for every column of the result table. In
Figure [Lb| query formulation with suggested keywords and result representation
in the SchenQL GUI is depicted. If a search result is selected by clicking on it,
detail views open (see Figure which offer all information available for the
respective element of a base concept. Furthermore we incorporated two already
established visualisations: Ego Graph [34] and BowTie [25]. The Ego Graph for
persons (see Figure top) supports the analysis of persons’ most important
co-authorships. The BowTie visualisation can be used for easy estimation of a
person’s, publication’s or venue’s influence in terms of gained citations and its

actuality (see Figure [1d).

4 Evaluation

Our evaluation of the SchenQL system consists of a qualitative and a quantitative
investigation. In a first qualitative study, we examine domain experts’ use-cases

6 Kreutz et al.

Person
PUBLICATIONS WRITTEN BY “Ralf Schenkel” IN YEAR 2018 n
Primary Ralf Schenkel Ego Graph BowTie
Name E— WRITTEN BY | EDITED BY | PUBLISHED BY | ABOUT KEYWORD | ABOUT | AFTER | BEFORE
IN YEAR [AppeareD IN | ciTep By | rererences [miiep [anp [or [not
ORCID 0000-0001-5379-5191
Coauthors Gerhard Weikum (39) Year
Title 4V Type
[] Martin Theobald (30)
Katja Hose (16) ReCAP - Information Retrieval and Case-Based Reasoning for Robust Deli... 2018 inprocee.. M.
Show more v Prioritizing and Scheduling Conferences for Metadata Harvesting in dblp. 2018 article L
PRPIy homepeess (b) SchenQL GUI for a search with suggested
alfSchenkef
How t0 read this diagram? language components and search result.
Publications
e Year Type
v
SchenQL - A Domain-Specific Query Language... 2019 article ...
Vear: 2006 - Citations: 46

Analyzing online schema extraction approache... 2019 inpr... ...

(c) BowTie view of referenced and citing papers
of a person with numbers of referenced (bows left
of knot)/citing(bows right of knot) papers per
year in single slices. The higher the number of
citations or references, the longer the bow.

(a) Person detail view with Ego
Graph. Nodes symbolise authors,
the further an author is from the
middle, the less publications he
shares with the person in focus.

Figure 1: SchenQL GUI (top right), detail view of a person with Ego Graph (left)
and BowTie view (bottom right).

and desired functionality of a DSL such as SchenQL as well as an accompa-
nied GUI. The major goal of this first investigation was to check SchenQL for
completeness and suitability for the addressed use cases. In a subsequent step,
we conducted a quantitative study in which we first compared SchenQL with
SQL, both used through a command line interface (CLI) to ensure comparabil-
ity. The goal was to measure the effectiveness, efficiency and users’ satisfaction
with SchenQL as query language. As a follow-up, we evaluated the web-based
GUI of the SchenQL system using the same queries and compared the results
with those received from usage of the SchenQL CLI. We additionally investigated
the SchenQL system’s user experience using the User Experience Questionnaire
(UEQ) [36].

Considering the overall goals for SchenQL, we derived the following three
hypotheses to be investigated:

H; Utilisation of the SchenQL CLI achieves better results in terms of higher
correctness, lower perceived difficulty of query construction as well as lower
required time for query formulation than usage of SQL.

Hs SchenQL is suitable for domain-experts as well as non-experts.

H; The SchenQL system provides high suitability and user experience (indicated
by values > .8 for all six quality dimensions assessed with the UEQ [7]) for
users not familiar with structured queries.

SchenQL: Evaluation of a Query Language for Bibliographic Metadata 7

For the studies, we used a dataset from the area of computer science: our
structures were filled with data from dblp [30] mapped on data from Semantic
Scholar [6] and enriched with information about institutions from Wikidata [8].

4.1 Qualitative Study: Interviews

To get a comprehensive picture of SchenQL’s completeness and suitability, we
conducted semi-structured one-on-one interviews with four employees of the dblp
team to discover realistic use-cases as well as desirable functionalities and poten-
tial extensions. Leading questions were which queries they would like to answer
with the data and which functions or visualisations they envisioned in a GUI.
The participants do work daily on digital libraries and are thus considered highly
experienced in the area. They were only aware of the domain of interest and the
underlying dataset but did not know anything about SchenQL.

The interviews showed that the dblp staff wished to formulate queries to com-
pute keywords of other publications that were published in the same journal as
a given publication, the determination of the most productive or cited authors,
as well as the most cited authors with few co-authors. Furthermore, a GUI
should support numerous visualisations: colour coded topics of publications or
co-author-groups were explicitly asked for. Another participant requested inter-
mateable components for the visualisation of graphs to display co-publications,
co-institutions or connections between venues. Other desired functionalities were
a fault-tolerant person name search and sophisticated ranking methods.

As expected, the experts’ suggestions were quite specific and strongly shaped
by their daily work with dblp, which may not fit classic non-expert use of digital
libraries. SchenQL is able to formulate several of the desired questions, however
it needs to be evaluated by non-power-users as we have done in the quantitative
evaluation described below to ensure usability for casual users as well. Comments
on visualisation drove the design of the GUI’s visual analysis components.

4.2 Quantitative Study: SchenQL CLI vs. SQL, GUI and UEQ

Our quantitative study consists of two parts: the SchenQL CLI is compared to
SQL, then the usability of the GUI and thus the SchenQL system as a whole
is assessed. For the first part, it is not feasible to compare a specialised system
such as the SchenQL CLI to a commercial search engine, differences between the
compared systems should be minor [24]. Additionally, as stated above, search
interfaces in this domain [TJ3I6122I30] do not provide as many functionalities
as SchenQL. We also refrained from evaluating the CLI against other DSLs
such as Cypher [20] as test users would have been required to learn two new
query languages. Comparing our CLI against SPARQL would have required the
definition of classes, properties and labels for the dataset and was therefore also
disregarded in favour of the comparison against SQL.

Users participated voluntarily in the study, they were aware of being able to
quit any time without negative consequences. They actively agreed on their data
being collected anonymously and their screens being captured. We assume gender

8 Kreutz et al.

@1 What are the titles of publications written by author A?

Q2 What are the names of authors which published at conference C?

@3 What are the titles of the publications referenced by author A in year Y7
@4 What are the titles of the five most cited publications written by author A?

Table 2: Templates of all queries used in the qualitative evaluations. A are dif-
ferent authors, C' is a conference and Y is a year.

does not influence the measured values so it is not seen as additional factor in
the evaluation [24]. We assume domain-experts are versed in the vocabulary and
connections between bibliographic objects, non-experts might have their first
encounter with bibliographic metadata.

For significance tests, we used an independent two-sample t-test in case data
is normally distributed (checked with Shapiro-Wilk test) and variances are ho-
mogeneous (checked with Levene’s test). Otherwise and if we do not specify
differently we applied Mann-Whitney U tests. We consider a p-value of .05 as
significance level.

Queries In both parts of the study, we asked the participants to find answers to
the queries given in Table [2| using either SchenQL CLI/SQL (part I) or the GUI
(part IT). The used queries are inspired by everyday search tasks of users of digital
libraries [I6l33]. We formulated four different types of queries targeting core
concepts found in the domain. Variables were switched between query languages
to prevent learning effects based on query results. @)1, @3 and Q)4 are publication
searches while Q5 targets person search. ()7 and Q2 can be answered by using
dblp [30] alone. Except for @3, Semantic Scholar [6] could technically be used
to find answers for the queries. The following formulation of Q3 in SQL intends
to show the complexity of those queries:

SELECT DISTINCT title
FROM publication p, publication_references pr
WHERE p.publicationKey = pr.pub2Key AND pr.pubilKey IN (
SELECT publicationKey
FROM person_authored_publication NATURAL JOIN person_names
NATURAL JOIN publication
WHERE person_names.name = "A" AND year = Y);

In SchenQL, the query could be formulated as follows (for all queries see [27]):

‘PUBLICATIDNS CITED BY (PUBLICATIONS WRITTEN BY "A" IN YEAR Y); ‘

We refrained from evaluating more complex queries to keep the construction
time for SQL queries feasible.

Part I: SchenQL CLI vs. SQL

With this first part of the quantitative study, we assess the usability, suitability
as well as user satisfaction of usage of the SchenQL CLI compared to SQL
for queries typically answered with an information retrieval system operating

SchenQL: Evaluation of a Query Language for Bibliographic Metadata 9

SQL SchenQL CLI SchenQL GUI
CORR/|DIFF |time | CORR|DIFF |time CORR|DIFF|time
Q1]90.48 [2.86 [4:57 [90.48 [1.57 [2:57 Q1|90 1.3 [1:05
Q2]90.48 |3. |4:35 |100. |2.1 [3:11 Q2|90 |22 |1:41
Q3|23.81 [4.86 (8:55 [47.62 |2.71 |3:33 Q340 (3.6 |2:56
Q4]23.81 |5.91 |10:36]95.24 |1.71 |1:53 Q4|90 |24 |2:18

Table 3: Correctness (CORR) in per- Table 4: Correctness (CORR) in
cent, assessed average difficulty (DIFF) percent, assessed average difficulty
and average time in minutes for the four (DIFF) and average time in minutes
queries for SQL and the SchenQL CLI. for the four queries for the GUI.

on bibliographic metadata. Additionally, the need for a DSL in the domain of
bibliographic metadata is analysed as we try to verify or falsify hypotheses H;
and H,. Participants of this evaluation needed to be familiar with SQL.

Setting We defined the evaluation process of our archetypical interactive in-
formation retrieval study [24] as follows: every user performed the evaluation
alone in presence of a passive investigator on a computer with two monitors.
The screens were captured in order to measure times used to formulate the
queries. A query language was assigned with which a user was going to start the
evaluation to compensate for learning effects. Users were permitted to use the
internet at any stage of the evaluation. A SchenQL cheat sheet, the ER diagram
and examples for the database schema provided to test subjects can be found in
Kreutz et al. [27].

At first, a video tutorial [4] for the introduction and usage of SQL and
the SchenQL CLI was shown, afterwards subjects were permitted to formu-
late queries using the system they were starting to work with. Following this
optional step, users were asked to answer a first online questionnaire to assess
their familiarity with the domain of bibliographic metadata. Participants were
asked to submit the queries in SQL and SchenQL respectively. This part of the
first quantitative evaluation was concluded with a second online questionnaire
regarding the overall impression of SchenQL, the rating of SchenQL and SQL
for the formulation of queries as well as several open questions targeting possible
advantages and improvements of SchenQL. We evaluated 21 participants from
the area of computer science with SQL knowledge. In total, ten subjects started
by using SQL, eleven participants began the evaluation using SchenQL.

Analysis of H; To assess validity of hypothesis H; of SchenQL leading to
better results than using SQL, we observe the number of correctly formulated
queries, the rated difficulty and the required time for the formulation of queries
with the SchenQL CLI and SQL. For each of these values, we first conducted
significance tests on all four queries together, here the two languages SchenQL
and SQL were regarded as groups, afterwards we performed significance tests on

10 Kreutz et al.

each of the four queries. Table [3] gives an overview of correctness, average rated
difficulty and average time for all four queries for both languages. Difficulty was
rated on a scale from 1 (very easy) to 7 (very difficult) to allow neutral ratings.

Correctness 57.14% of queries were correctly formulated using SQL whereas
83.33% of queries were correctly formulated using SchenQL. This result clearly
shows the significantly superior effectiveness of SchenQL compared to SQL in
terms of overall correctness. While ;1 and ()2 were answered correctly by most
participants, the number of correctly formulated queries for @3 and @4 highly
depends on the system. ()4 was correctly answered by a quarter of subjects
using SQL while more than 95% of users were able to formulate the query in
SchenQL, this difference is significant. These observations support the partial
verification of Hy in terms of higher number of correctly formulated queries with
the SchenQL CLI compared to SQL.

Rated Difficulty The mean rating of difficulty of the formulation of queries
with SQL was 4.16 (¢ = 1.94), with SchenQL the mean rating was significantly
lower (2.02, 0 = 1.11). On average, query construction using SQL is rated more
difficult for every query. The averaged highest rated difficulty for a query in
SchenQL is still lower than the averaged lowest rated difficulty of a query in
SQL. We found significantly lower ratings of difficulties of queries for all four
queries (for Q3 t-test) when using SchenQL compared to utilisation of SQL.
These observations support the partial verification of H; in terms lower perceived
difficulty in query formulation with the SchenQL CLI compared to SQL.

Time Average construction of queries in SQL took 7:15 minutes (o = 4:47
min.), with the CLI the construction was significantly quicker and took 2:52
minutes (¢ = 1:51 min.) on average. This documents the efficiency of SchenQL.
We found significantly lower required times for query formulation all four queries
(for @1 t-test) when using SchenQL compared to utilisation of SQL. These ob-
servations support the partial verification of Hy in terms of lower required time
for query formulation with the SchenQL CLI compared to SQL.

General Results The queries Q5 and @4 in SQL are assumed to be com-
plex which is supported by the low percentage of correct formulations using
SQL. They are also much longer than the respective SchenQL ones so the time
required to write them down is higher and there is more opportunity to make
mistakes which causes query reformulation [35]. The overall rating of suitability
of SchenQL for constructing the queries resulted in an average of 6.43 (o = .6)
while the rating was significantly lower (3.14, 0 = 1.2) for SQL on a scale from
1 (very bad) to 7 (very good). While SQL was rated below mediocre, SchenQL
was evaluated as excellent which shows users’ satisfaction with it. These results
lead to the conclusion of SchenQL being highly suitable for solving the given
tasks which represent everyday queries of users of digital libraries and a high
user acceptance of SchenQL.

In summary, utilisation of SchenQL achieves higher correctness of queries,
lower perceived difficulty and requires less time than using SQL, which together
verifies hypothesis H;.

SchenQL: Evaluation of a Query Language for Bibliographic Metadata 11

Analysis of Ho To assess validity of hypothesis Hy of SchenQL being suitable
for experts and non-experts, we conduct significance tests on all queries inde-
pendent by system, all queries dependent on system and each separate query for
the three aforementioned values (correctness, rated difficulty and required time).
The 21 participants from before form the two user groups: nine participants are
non-experts and twelve participants are familiar with bibliographic metadata.

Correctness In general, 75% of queries were correctly formulated by domain-
experts whereas non-experts achieved only 63.89% in both QLs. (Non-)Experts
were able to solve 65.58% (47.22%) of queries in SQL and 85.42% (80.56%) in
SchenQL. Tian et al. [38] stated that for a domain-expert, it would be easier to
write queries in a DSL than in SQL.We found no significant differences between
the two groups for correctness (separated by system, by query and in general).

Rated Difficulty We found no significant differences between the two groups
for rated difficulty (separated by system, by query and in general).

Time We found no significant differences between the two groups for required
time (separated by system and in general). We found significant differences for
times needed to complete Q3 and Q4 with SQL when applying t-tests for the two
user groups. With @3 the twelve participants versed in the domain were much
slower to complete the task (inexperienced: 6:04 min., o = 2:51 min.; experienced:
11:02 min., o = 5:41 min.) while with Q4 users with experience in bibliographic
metadata were faster (inexperienced: 13:26 min., ¢ = 6.17 min.; experienced:
8:28 min., 0 = 4:27 min.). We observed that domain-experts tend to review the
result of their query online and therefore need more time to answer ()3 than
non-experts. Another explanation could be that since they are experienced with
the principle of citations they were more confused with the one needed table as
it contains publications and their references instead of two tables for papers, one
which holds its citations and one which holds its references. Domain-experts are
faster in formulating Q4 as the query might be familiar and they already took
more time to understand the database layout of references and citations while
solving @3 which had to be tackled beforehand.

Result No user group is consistently better than the other, the SchenQL
CLI is suitable for domain-experts as well as non-experts, thus, Hy is verified.

Open Questions and Discussion In the open questions, the short, easy and
intuitive SchenQL queries were complimented by many participants. Users noted
the comprehensible syntax was suitable for non-computer scientists as it resem-
bles natural language. Some noted their initial confusion due to the syntax and
their incomprehension of usage of literals or limitations. Others asked for auto-
completion, syntax highlighting, a documentation and more functions such as
most cited with variable return values. No participant wished for visualisations
which could be caused by design fixation [23] or generally lower requirements for
such a system compared to the experts from the qualitative study.

The average overall impression of SchenQL was rated by the subjects as 5.05
(o0 = .74) on a scale from 1 (very bad) to 6 (very good), enforcing a non-neutral
rating. Assessed difficulty and required times to formulate the four queries were

12 Kreutz et al.

significantly lower when utilising SchenQL compared to SQL, the overall cor-
rectness of all queries was significantly higher for SchenQL as well. This verified
hypothesis H; of the CLI leading to generally better results than SQL. Our hy-
pothesis Hs of the SchenQL system being suitable for domain-experts as well as
casual users is also verified. No user group was found to be consistently signifi-
cantly better than the other one.

This evaluation lead to the construction of the prototypical GUI with its
syntax suggestion as well as auto-completion features. Additionally, although
they were not mentioned by participants in this evaluation, some visualisations
were included following suggestions from the qualitative evaluation.

Part II: SchenQL GUI vs. CLI and User Experience Questionnaire

This second part of the quantitative study focused on evaluating the GUI and,
thus, the SchenQL system as a whole. We assessed how usage of the web interface
compared to users’ impressions and performance when utilising the SchenQL
CLI. Beside a part where test users answered queries with the GUI, we con-
ducted the User Experience Questionnaire [36] to measure user experience with
the SchenQL system. To resemble our target audience we did not pose the pre-
condition of users being familiar with SQL or formulation of structured queries.
Here, we intend to assess the hypothesis Hs.

Setting This evaluation is performed analogous to the previous part: every
user performed the evaluation alone but in presence of a passive investigator
on a computer with two monitors. We measured times used to find answers
by capturing screens. The same SchenQL cheat sheet as in the first part was
provided to the test subjects. At first, a video tutorial [5] introduced the usage of
the SchenQL GUI. The next part was the formulation or the navigation towards
solutions of the four queries introduced in Table[2 using the GUI. Afterwards, the
subjects completed the User Experience Questionnaire [36] followed by questions
regarding the overall impression of the GUI as well as possible improvements.
We evaluated ten participants from the area of computer science and adjacent
fields which did not yet take part in a previous evaluation of the SchenQL system.

Partial Analysis of Hj: users unfamiliar with query formulation To
assess partial validity of hypothesis Hs in terms of the GUI’s suitability for
users unfamiliar with query formulation, we conduct significance tests on all
queries together and each separate query for correctness, rated difficulty and
required time. We observe the results from usage of the SchenQL CLI from the
previous evaluation and participants’ results from utilisation of the GUI as the
two groups. Table[d] gives an overview of correctness, average rated difficulty and
average required time for all four queries when using the SchenQL system.
Correctness Except for 03, participants mostly solved the queries correctly,
resulting in an overall correctness of 77.5% (-10.83% compared to CLI, difference

SchenQL: Evaluation of a Query Language for Bibliographic Metadata 13

not significant). We found no significant differences between the two groups for
correctness in any of the four queries.

Rated Difficulty Users rated the difficulty of queries as 2.38 (4.35 com-
pared to CLI, difference not significant) on average. We found no significant
differences between the two groups for rated difficulty in any of the four queries.

Time Users took about 2:15 minutes for retrieval of the solution (-0:37 min-
utes compared to CLI, difference is significant) on average. We found significant
differences in times required to solve queries @1 and @)2. Times required for for-
mulating the queries with the GUI were significantly lower than those resulting
from using the CLI. As these queries were relatively simple, we assume the auto-
completion and suggestion-feature of the GUI is especially helpful in the fast
construction of straightforward queries or the GUI offering other suitable ways
of quickly obtaining simple bibliographic information. Usage of the GUI might
be more intuitive compared to writing simple queries in the SchenQL CLI.

General Results We want to point out that participants from the first part
of the quantitative study who were familiar with query formulation, but were not
offered help in the construction, did not significantly differ in rating of difficulty
and correctness from users of this user study. In case of the GUI, subjects were
supported in the formulation of queries but were not necessarily familiar with
this kind of task. Hence, we assume the system’s suggestion and auto-completion
feature is useful for redemption of unequal prior knowledge in this case.

Correctness and rating of difficulty did not differ significantly between usage
of CLI and GUI, but users were significantly faster in finding answers for simple
queries with the GUI which underlines the suitability of the interface for everyday
usage. Participants from this study resemble SchenQL’s target audience, which
additionally emphasizes its usefulness and partly verifies hypothesis H3 in terms
of the GUI being suitable for users not versed with structured query formulation.

Partial Analysis of Hz: UEQ Attractiveness, perspicuity, efficiency, depend-
ability, simulation and novelty of interactive products can be measured with the
UEQ [36] even at small sample sizes. Here, we want to conclude the assessment
of validity of hypothesis H3 in terms of rating of user experience.

Participants of this study answered the 26 questions of the UEQ regarding us-
age of the SchenQL system. Ratings on pairs of contrasting stances (-3 to 3) such
as complicated-easy or boring-exciting were then grouped to the six dimensions
mentioned before. Values above .8 are generally considered as positively evalu-
ated equalling high user experience, values above 2 are rarely encountered [7].

In general, users seem to enjoy using the SchenQL system (attractiveness =
2.07, o = .25). The handling of our system is extremely easy learned (perspicuity
= 2.3, 0 = .19). Tasks can be solved without unnecessary effort (efficiency =
2.03, 0 = .49) and users feel in control of the system (dependability = 1.83, o
= .63). They seem exited to use the SchenQL system (stimulation = 1.73, o =
.33) and rate the system as innovative and interesting (novelty = 1.58, 0 = .68).

As all six quality dimensions achieved ratings well over .8, the system is
positively evaluated which equals high user experience and partially verifies Hs.

14 Kreutz et al.

Open Questions and Discussion In the open questions, participants praised
the intuitive usability, the auto-completion and the suggestion feature. For future
development, suggestions for literals were requested and two participants wished
for a voice input. Remarkably, not a single user mentioned the need for more or
other visualisations, this is possibly attributed to design fixation [23] but might
also stem from the advanced needs of power users from the expert interviews.

Users were significantly faster in solving simple queries when using the GUI
compared to the CLI. As we found no significant impairments from usage of the
GUI, we assume its usefulness and usability for query formulation. Participants
from this study were less familiar with construction of structured queries com-
pared to those of the previous study but seemed to be adequately supported
by the GUI in retrieval of information. Together with the UEQ which showed
users’ high ratings (> .8) for all six quality dimensions (which proves high user
experience [7]), hypothesis Hs could be partially verified.

5 Conclusion and Future Work

We evaluated SchenQL, a domain-specific query language operating on biblio-
graphic metadata from the area of computer science with accompanying GUI
supporting query formulation. Our thorough evaluation against SQL showed the
need for such a DSL. Test subjects’ satisfaction with the SchenQL system was
assessed with application of the UEQ. The introduction of a GUI and its evalu-
ation with users resembling our target audience did not significantly change the
correctness of answers or the users’ rating of difficulty of the queries compared
to the CLI but instead the time needed to formulate simple queries was reduced
significantly. Missing prior knowledge with structured query formulation seems
to be compensated by using a GUI with a suggestions and auto-completion fea-
ture. As the CLI and the GUI proved to be viable tools for information retrieval
on bibliographic metadata, users’ preferences should decide which one to use.

Using SchenQL lead to generally better results compared to utilisation of SQL
(Hp). The system is suitable for domain-experts and non-experts (Hz). Our GUI
has high usability for users not familiar with structured query formulation (Hs).

Enhancements of functionalities could include more visualisations such as
color-coded topics or graph visualisation as the experts from the qualitative
study requested. Furthermore, more specific query options such as a filter for
papers with few co-authors or most cited with variable return values could be
included. As visualisations were not relevant for users in our quantitative evalu-
ation, future efforts could focus on supporting more advanced query options: al-
gorithms for social network analysis as PageRank, computation of mutual neigh-
bours, hubs and authorities or connected components [37] would fit. Centrality of
authors, the length of a shortest path between two authors and the introduction
of aliases for finding co-citations [19] would also be useful query building blocks.
Incorporation of social relevance in the search and result representation process
as shown in [I0] could also be an extension. User profiles could store papers and
keywords, which in terms influence results of search and exploration.

SchenQL: Evaluation of a Query Language for Bibliographic Metadata 15

References
1. Google Scholar, https://scholar.google.com/
2. GrapAL, https://grapal.allenai.org/
3. ResearchGate, https://www.researchgate.net
4. SchenQL Evaluation CLI vs. SQL - Tutorial, https://youtu.be/g7J64wzbESI
5. SchenQL Evaluation GUI - Tutorial, https://youtu.be/56-23zyUDPQ
6. Semantic Scholar, https://www.semanticscholar.org
7. User Experience Questionnaire Handbook, https://www.ueq-online.org/

©w %o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Material/Handbook.pdf

Wikdata, https://www.wikidata.org/wiki/Wikidata:Main_Page

Amaral, V., Helmer, S., Moerkotte, G.: A visual query language for HEP analysis.
In: IEEE NSS 2003. vol. 2, pp. 829-833. IEEE Computer Society (2003)
Amer-Yahia, S., Lakshmanan, L.V.S., Yu, C.: SocialScope: Enabling Information
Discovery on Social Content Sites. In: CIDR 2009. www.cidrdb.org (2009)
Baeza-Yates, R., Ribeiro-Neto, B.A.: Modern Information Retrieval - the concepts
and technology behind search, Second edition. Pearson Education Ltd., Harlow,
England (2011)

Bates, M.: Task Force Recommendation 2.3 Research and Design Review: Improv-
ing User Access to Library Catalog and Portal Information: Final Report (version
3) (2003)

Beall, J.: The weaknesses of full-text searching. The Journal of Academic Librari-
anship 34(5), 438 — 444 (2008)

Berget, G., Sandnes, F.E.: Why textual search interfaces fail: a study of cognitive
skills needed to construct successful queries. Inf. Res. 24(1) (2019)

Betts, C., Power, J., Ammar, W.: GrapAL: Connecting the Dots in Scientific Lit-
erature. In: ACL 2019. pp. 147-152. ACL (2019)

Bloehdorn, S., Cimiano, P., Duke, A., Haase, P., Heizmann, J., Thurlow, I., Vélker,
J.: Ontology-Based Question Answering for Digital Libraries. In: ECDL 2007.
vol. 4675, pp. 14-25. Springer (2007)

Borodin, A., Kiselev, Y., Mirvoda, S., Porshnev, S.: On Design of Domain-Specific
Query Language for the Metallurgical Industry. In: BDAS 2015. vol. 521, pp. 505—
515. Springer (2015)

Collberg, C.S.: A Fuzzy Visual Query Language for a Domain-Specific Web Search
Engine. In: Diagrams 2002. vol. 2317, pp. 176-190. Springer (2002)

Dries, A., Nijssen, S., Raedt, L.D.: BiQL: A Query Language for Analyzing Infor-
mation Networks. In: Bisociative Knowledge Discovery 2012, vol. 7250, pp. 147—
165. Springer (2012)

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V.,
Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.: Cypher: An Evolving Query
Language for Property Graphs. In: SIGMOD 2018. pp. 1433-1445. ACM (2018)
Guidi, F., Schena, I.: A Query Language for a Metadata Framework about Math-
ematical Resources. In: MKM 2003. vol. 2594, pp. 105-118. Springer (2003)
Hotho, A., Jaschke, R., Benz, D., Grahl, M., Krause, B., Schmitz, C., Stumme, G.:
Social Bookmarking am Beispiel BibSonomy. In: Social Semantic Web 2009, pp.
363-391. Springer (2009)

Jansson, D.G., Smith, S.M.: Design fixation. Design Studies 12(1), 3 — 11 (1991)
Kelly, D.: Methods for Evaluating Interactive Information Retrieval Systems with
Users. Found. Trends Inf. Ret. 3(1-2), 1-224 (2009)

https://scholar.google.com/
https://grapal.allenai.org/
https://www.researchgate.net
https://youtu.be/g7J64wzbE5I
https://youtu.be/56-23zyUDPQ
https://www.semanticscholar.org
https://www.ueq-online.org/Material/Handbook.pdf
https://www.ueq-online.org/Material/Handbook.pdf
https://www.wikidata.org/wiki/Wikidata:Main_Page

16

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

Kreutz et al.

Khazaei, T., Hoeber, O.: Supporting academic search tasks through citation visu-
alization and exploration. Int. J. on Digital Libraries 18(1), 59-72 (2017)

Klink, S., Ley, M., Rabbidge, E., Reuther, P., Walter, B., Weber, A.: Browsing and
visualizing digital bibliographic data. In: VisSym 2004. pp. 237-242. Eurographics
Association (2004)

Kreutz, C.K., Wolz, M., Schenkel, R.: SchenQL - A Domain-Specific Query Lan-
guage on Bibliographic Metadata. CoRR abs/1906.06132 (2019)

Kreutz, C.K., Wolz, M., Schenkel, R.: SchenQL: A Concept of a Domain-Specific
Query Language on Bibliographic Metadata. In: ICADL 2019. vol. 11853, pp. 239—
246. Springer (2019)

Leser, U.: A query language for biological networks. In: ECCB/JBI 2005. p. 39
(2005)

Ley, M.: DBLP - Some Lessons Learned. PVLDB 2(2), 1493-1500 (2009)
Madaan, A.: Domain Specific Multi-stage Query Language for Medical Document
Repositories. PVLDB 6(12), 1410-1415 (2013)

Martin, M.S., Gutiérrez, C., Wood, P.T.: SNQL: A Social Networks Query and
Transformation Language. In: AMW 2011. vol. 749. CEUR-WS.org (2011)
Pirolli, P.: Powers of 10: Modeling Complex Information-Seeking Systems at Mul-
tiple Scales. IEEE Computer 42(3), 33-40 (2009)

Reitz, F.: A Framework for an Ego-centered and Time-aware Visualization of Re-
lations in Arbitrary Data Repositories. CoORR abs/1009.5183 (2010)

Schaefer, A., Jordan, M., Klas, C., Fuhr, N.: Active Support for Query Formulation
in Virtual Digital Libraries: A Case Study with DAFFODIL. In: ECDL 2005 (2005)
Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the User Experience
Questionnaire (UEQ) in Different Evaluation Scenarios. In: HCI 2014. vol. 8517,
pp. 383-392. Springer (2014)

Seo, J., Guo, S., Lam, M.S.: SocialLite: An Efficient Graph Query Language Based
on Datalog. IEEE Trans. Knowl. Data Eng. 27(7), 1824-1837 (2015)

Tian, H., Sunderraman, R., Calin-Jageman, R.J., Yang, H., Zhu, Y., Katz, P.S.:
NeuroQL: A Domain-Specific Query Language for Neuroscience Data. In: EDBT
Workshops 2006. vol. 4254, pp. 613-624. Springer (2006)

Xu, B., Cai, R., Zhang, Z., Yang, X., Hao, Z., Li, Z., Liang, Z.: NADAQ: Natural
Language Database Querying Based on Deep Learning. IEEE Access 7, 35012—
35017 (2019)

	SchenQL: Evaluation of a Query Language for Bibliographic Metadata

